首页> 外文OA文献 >Beyond Counting: Comparisons of Density Maps for Crowd Analysis Tasks - Counting, Detection, and Tracking
【2h】

Beyond Counting: Comparisons of Density Maps for Crowd Analysis Tasks - Counting, Detection, and Tracking

机译:超越计数:人群分析任务的密度图比较 -   计数,检测和跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For crowded scenes, the accuracy of object-based computer vision methodsdeclines when the images are low-resolution and objects have severe occlusions.Taking counting methods for example, almost all the recent state-of-the-artcounting methods bypass explicit detection and adopt regression-based methodsto directly count the objects of interest. Among regression-based methods,density map estimation, where the number of objects inside a subregion is theintegral of the density map over that subregion, is especially promisingbecause it preserves spatial information, which makes it useful for bothcounting and localization (detection and tracking). With the power of deepconvolutional neural networks (CNNs) the counting performance has improvedsteadily. The goal of this paper is to evaluate density maps generated bydensity estimation methods on a variety of crowd analysis tasks, includingcounting, detection, and tracking. Most existing CNN methods produce densitymaps with resolution that is smaller than the original images, due to thedownsample strides in the convolution/pooling operations. To produce anoriginal-resolution density map, we also evaluate a classical CNN that uses asliding window regressor to predict the density for every pixel in the image.We also consider a fully convolutional (FCNN) adaptation, with skip connectionsfrom lower convolutional layers to compensate for loss in spatial informationduring upsampling. In our experiments, we found that the lower-resolutiondensity maps sometimes have better counting performance. In contrast, theoriginal-resolution density maps improved localization tasks, such as detectionand tracking, compared to bilinear upsampling the lower-resolution densitymaps. Finally, we also propose several metrics for measuring the quality of adensity map, and relate them to experiment results on counting andlocalization.
机译:对于拥挤的场景,基于对象的计算机视觉方法的准确性会在图像分辨率较低且对象具有严重遮挡时下降,例如以计数方法为例,几乎所有最新的最新计数方法都绕过显式检测并采用回归的方法直接计算感兴趣的对象。在基于回归的方法中,密度图估计(其中子区域内的对象数是该子区域上密度图的积分)非常有希望,因为它保留了空间信息,这对于计数和定位(检测和跟踪)都非常有用。借助深度卷积神经网络(CNN)的功能,计数性能稳步提高。本文的目的是评估密度估算方法在各种人群分析任务(包括计数,检测和跟踪)上生成的密度图。由于卷积/合并操作中的下采样步长,大多数现有的CNN方法生成的分辨率比原始图像小的密度图。为了产生原始分辨率的密度图,我们还评估了经典的CNN,该CNN使用滑动窗口回归器预测图像中每个像素的密度。我们还考虑了完全卷积(FCNN)自适应,并使用来自较低卷积层的跳过连接来补偿上采样期间空间信息的丢失。在我们的实验中,我们发现较低分辨率的密度图有时具有更好的计数性能。相反,与低分辨率密度图的双线性升采样相比,原始分辨率密度图改善了定位任务,例如检测和跟踪。最后,我们还提出了几种测量密度图质量的指标,并将它们与计数和定位的实验结果相关联。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号